Origins of the Xylella fastidiosa Prophage-Like Regions and Their Impact in Genome Differentiation

نویسندگان

  • Alessandro de Mello Varani
  • Rangel Celso Souza
  • Helder I. Nakaya
  • Wanessa Cristina de Lima
  • Luiz Gonzaga Paula de Almeida
  • Elliot Watanabe Kitajima
  • Jianchi Chen
  • Edwin Civerolo
  • Ana Tereza Ribeiro Vasconcelos
  • Marie-Anne Van Sluys
چکیده

Xylella fastidiosa is a Gram negative plant pathogen causing many economically important diseases, and analyses of completely sequenced X. fastidiosa genome strains allowed the identification of many prophage-like elements and possibly phage remnants, accounting for up to 15% of the genome composition. To better evaluate the recent evolution of the X. fastidiosa chromosome backbone among distinct pathovars, the number and location of prophage-like regions on two finished genomes (9a5c and Temecula1), and in two candidate molecules (Ann1 and Dixon) were assessed. Based on comparative best bidirectional hit analyses, the majority (51%) of the predicted genes in the X. fastidiosa prophage-like regions are related to structural phage genes belonging to the Siphoviridae family. Electron micrograph reveals the existence of putative viral particles with similar morphology to lambda phages in the bacterial cell in planta. Moreover, analysis of microarray data indicates that 9a5c strain cultivated under stress conditions presents enhanced expression of phage anti-repressor genes, suggesting switches from lysogenic to lytic cycle of phages under stress-induced situations. Furthermore, virulence-associated proteins and toxins are found within these prophage-like elements, thus suggesting an important role in host adaptation. Finally, clustering analyses of phage integrase genes based on multiple alignment patterns reveal they group in five lineages, all possessing a tyrosine recombinase catalytic domain, and phylogenetically close to other integrases found in phages that are genetic mosaics and able to perform generalized and specialized transduction. Integration sites and tRNA association is also evidenced. In summary, we present comparative and experimental evidence supporting the association and contribution of phage activity on the differentiation of Xylella genomes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Xylella fastidiosa comparative genomic database is an information resource to explore the annotation, genomic features, and biology of different strains

The Xylella fastidiosa comparative genomic database is a scientific resource with the aim to provide a user-friendly interface for accessing high-quality manually curated genomic annotation and comparative sequence analysis, as well as for identifying and mapping prophage-like elements, a marked feature of Xylella genomes. Here we describe a database and tools for exploring the biology of this ...

متن کامل

Genome-wide analysis of Xylella fastidiosa: implications for detection and strain relationships

The xylem limited plant pathogenic bacterium Xylella fastidiosa causes economically important diseases on agronomic, horticultural and landscape plants. This review includes the current status of polymerase chain reaction (PCR) based systems for detection and characterization of X. fastidiosa, and presents a genome-wide analysis of strain differentiation. The use of genomics data for strain com...

متن کامل

Multilocus simple sequence repeat markers for differentiating strains and evaluating genetic diversity of Xylella fastidiosa.

A genome-wide search was performed to identify simple sequence repeat (SSR) loci among the available sequence databases from four strains of Xylella fastidiosa (strains causing Pierce's disease, citrus variegated chlorosis, almond leaf scorch, and oleander leaf scorch). Thirty-four SSR loci were selected for SSR primer design and were validated in PCR experiments. These multilocus SSR primers, ...

متن کامل

Genome Sequence of a Xylella fastidiosa Strain Causing Sycamore Leaf Scorch Disease in Virginia

Xylella fastidiosa causes bacterial leaf scorch in landscape trees including sycamore. We determined the draft genome of X. fastidiosa strain Sy-Va, isolated in Virginia from a sycamore tree displaying leaf scorch symptoms. The Sy-VA genome contains 2,477,829 bp, and has a G+C content of 51.64 mol%.

متن کامل

Multilocus sequence typing of Xylella fastidiosa causing Pierce's disease and oleander leaf scorch in the United States.

Using a modified multilocus sequence typing (MLST) scheme for the bacterial plant pathogen Xylella fastidiosa based on the same seven housekeeping genes employed in a previously published MLST, we studied the genetic diversity of two subspecies, X. fastidiosa subsp. fastidiosa and X. fastidiosa subsp. sandyi, which cause Pierce's disease and oleander leaf scorch, respectively. Typing of 85 U.S....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • PLoS ONE

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2008